Time-Varying Flow Analysis and Visualization for Climate Science
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The starting point of all flow analysis is particle advection. The divergence in pathlines can segment flow structures. Data distribution statistics can also classify features.
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Particle trajectories are connected into curves. The Finite-Time Lyapunov Exponent (FTLE) is computed from pathlines seeded Temporal summarization helps scientists understand underlying time series in
Place seeds and start advection Exchange seeds that go out of local bounds Merge partial results at each time step. climate models.
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Field lines are connected into surfaces. Quantities such as FTLE and features such as Lagrangian Coherent Time histograms computed at block levels can serve as visual signatures of a
Structures (LCS) need to be redefined for stochastic flows. feature’s behavior over space and time.
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algorithm had < 5% imbalance at scale. balancing is near-ideal strong scaling.
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